A portable system for processing donated whole blood into high quality components without centrifugation

نویسندگان

  • Sean C Gifford
  • Briony C Strachan
  • Hui Xia
  • Eszter Vörös
  • Kian Torabian
  • Taylor A Tomasino
  • Gary D Griffin
  • Benjamin Lichtiger
  • Fleur M Aung
  • Sergey S Shevkoplyas
چکیده

BACKGROUND The use of centrifugation-based approaches for processing donated blood into components is routine in the industrialized world, as disparate storage conditions require the rapid separation of 'whole blood' into distinct red blood cell (RBC), platelet, and plasma products. However, the logistical complications and potential cellular damage associated with centrifugation/apheresis manufacturing of blood products are well documented. The objective of this study was to evaluate a proof-of-concept system for whole blood processing, which does not employ electromechanical parts, is easily portable, and can be operated immediately after donation with minimal human labor. METHODS AND FINDINGS In a split-unit study (n = 6), full (~500mL) units of freshly-donated whole blood were divided, with one half processed by conventional centrifugation techniques and the other with the new blood separation system. Each of these processes took 2-3 hours to complete and were performed in parallel. Blood products generated by the two approaches were compared using an extensive panel of cellular and plasma quality metrics. Comparison of nearly all RBC parameters showed no significant differences between the two approaches, although the portable system generated RBC units with a slight but statistically significant improvement in 2,3-diphosphoglyceric acid concentration (p < 0.05). More notably, several markers of platelet damage were significantly and meaningfully higher in products generated with conventional centrifugation: the increase in platelet activation (assessed via P-selectin expression in platelets before and after blood processing) was nearly 4-fold higher for platelet units produced via centrifugation, and the release of pro-inflammatory mediators (soluble CD40-ligand, thromboxane B2) was significantly higher for centrifuged platelets as well (p < 0.01). CONCLUSION This study demonstrated that a simple, passive system for separating donated blood into components may be a viable alternative to centrifugation-particularly for applications in remote or resource-limited settings, or for patients requiring highly functional platelet product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality Assessment of Established and Emerging Blood Components for Transfusion

Blood is donated either as whole blood, with subsequent component processing, or through the use of apheresis devices that extract one or more components and return the rest of the donation to the donor. Blood component therapy supplanted whole blood transfusion in industrialized countries in the middle of the twentieth century and remains the standard of care for the majority of patients recei...

متن کامل

The quality of stored umbilical cord and adult-donated whole blood in Mombasa, Kenya

BACKGROUND In sub-Saharan Africa umbilical cord blood may be a useful source of blood for transfusion. Before clinical trials, evidence is needed that cord blood donations, which vary greatly in volume, can be collected and stored into a fixed volume of anticoagulant-preservative solution obviating the need for prestorage processing. STUDY DESIGN AND METHODS Twenty-four umbilical cord whole b...

متن کامل

Quality, Stability, and Safety Data of Packed Red Cells and Plasma Processed by Gravity Separation Using a New Fully Integrated Hollow-Fibre Filter Device

Background. We developed a completely closed system based on gravity separation without centrifugation steps for separation of whole blood. With this new system we compared quality and stability of the processed blood components (PRC and plasma) with respect to classical preparation. Furthermore the cost-effectiveness of this hollow fibre system was evaluated. Study Design and Methods. Whole bl...

متن کامل

Separation of whole blood into plasma and red cells by using a hollow-fibre filtration system.

BACKGROUND AND OBJECTIVES The aim of this study was to assess the separation of whole blood into red cells and plasma by using the Sangofer device, which is a gravity-fed, hollow-fibre system. The components would then be compared with those produced by the use of more elaborate technical equipment. MATERIALS AND METHODS Ten whole-blood units were leucoreduced by using a WBF2 filter and immed...

متن کامل

Process Improvement by Eliminating Mixing of Whole Blood Units after an Overnight Hold Prior to Component Production Using the Buffy Coat Method

The elimination of a thorough manual mixing of whole blood (WB) which takes place following the overnight hold, but before the first centrifugation step, during buffy coat component production at Canadian Blood Services (CBS) was investigated. WB was pooled after donation and split. Pairs of platelet, red blood cell (RBC), and plasma components were produced, with half using the standard method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018